Outsourcing Eigen-Decomposition and Singular Value Decomposition of Large Matrix to a Public Cloud
نویسندگان
چکیده
منابع مشابه
پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )
در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...
15 صفحه اولSplit-and-Combine Singular Value Decomposition for Large-Scale Matrix
The singular value decomposition (SVD) is a fundamental matrix decomposition in linear algebra. It is widely applied in many modern techniques, for example, highdimensional data visualization, dimension reduction, data mining, latent semantic analysis, and so forth. Although the SVD plays an essential role in these fields, its apparent weakness is the order three computational cost. This order ...
متن کاملSingular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)
The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...
متن کاملClustered Sub-Matrix Singular Value Decomposition
This paper presents an alternative algorithm based on the singular value decomposition (SVD) that creates vector representation for linguistic units with reduced dimensionality. The work was motivated by an application aimed to represent text segments for further processing in a multi-document summarization system. The algorithm tries to compensate for SVD’s bias towards dominant-topic document...
متن کاملCoupled Singular Value Decomposition of a Cross-Covariance Matrix
We derive coupled on-line learning rules for the singular value decomposition (SVD) of a cross-covariance matrix. In coupled SVD rules, the singular value is estimated alongside the singular vectors, and the effective learning rates for the singular vector rules are influenced by the singular value estimates. In addition, we use a first-order approximation of Gram-Schmidt orthonormalization as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2016
ISSN: 2169-3536
DOI: 10.1109/access.2016.2535103